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the electrophysiological 
underpinnings of variation in verbal 
working memory capacity
Yuri G. pavlov1,2* & Boris Kotchoubey1

Working memory (WM) consists of short-term storage and executive components. We studied 
cortical oscillatory correlates of these two components in a large sample of 156 participants to assess 
separately the contribution of them to individual differences in WM. The participants were presented 
with WM tasks of above-average complexity. Some of the tasks required only storage in WM, others 
required storage and mental manipulations. our data indicate a close relationship between frontal 
midline theta, central beta activity and the executive components of WM. The oscillatory counterparts 
of the executive components were associated with individual differences in verbal WM performance. 
In contrast, alpha activity was not related to the individual differences. The results demonstrate 
that executive components of WM, rather than short-term storage capacity, play the decisive role in 
individual WM capacity limits.

Working memory (WM)—our ability to maintain and manipulate information in a short term—is not a uniform 
construct. Although several theoretical models compete for the best  explanation1, most of them converge on 
the idea that WM entails (1) short-term storage for memory content (which can be regarded as a separate pro-
cessing unit or as activated parts of long-term memory), and (2) executive components which are responsible 
for attentional control, protection from interference, active processing and reorganization, or manipulation of 
information in the short-term  storage2,3. As regards the former, it should be distinguished from the ultrashort-
term storage in iconic or echoic memory. As regards the latter, these executive components are what makes WM 
“working” and differentiates the WM in the proper sense from mere short-term memory. Most WM tasks in 
real life require both short-term storage and executive components. For example, keeping a phone number in 
mind until it is dialed requires transformation of verbal information into a sequence of button presses. The task 
also involves switching attention between the current number to dial and pressing buttons on the phone panel. 
A more complex example is the conversion of a shopping list into the optimal path while shopping. This task, 
in addition to the translation of the list into a sequence of spatial locations, also involves constant updating of 
information in WM.

Available electrophysiological data indicate that manipulation of information in WM is strongly related to 
theta oscillations (4–8 Hz) in the medial prefrontal and anterior cingulate cortex for manipulation of informa-
tion in  WM4–12. Therefore, theta is thought to reflect engagement of the executive components of  WM13. In 
turn, posterior alpha activity (8–13 Hz) has been associated with short-term storage, and may directly underlie 
maintenance of information in  WM14,15. Alpha activity responds to increasing load reaching an asymptote at the 
levels of individual’s WM  capacity16. Thus, posterior alpha activity can be seen as a reflection of the short-term 
storage component of WM.

The oscillatory mechanisms supporting individual WM capacity limits remain largely understudied. To study 
individual differences, large samples are essential. However, most available studies built their conclusions on 
samples of less than 30  individuals16–25. Better-powered studies (~ 35 participants per group) yielded mixed 
 findings11,26–28. For instance, after a median split, only the high-performance group showed an increase of theta 
with  load11,28, suggesting that theta activity and the related executive functions are important for successful 
maintenance of WM. But another study did not find this  relationship27. The relationship between alpha and beta 
activity and individual WM capacity is even less consistent.
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The components of WM may contribute to individual differences in a different  scale29,30. Here, we sought to 
provide solid data to set apart the contribution of oscillatory counterparts of short-term storage and executive 
components of WM to individual differences. To reach this goal, we analyzed EEG data from a large number of 
participants (N = 156) in WM tasks of above average complexity, which required either only retention of letter 
strings (Retention task) or retention and manipulation with the letters (mental recombination to the alphabeti-
cal order, Manipulation task) (see Fig. 1 for the experimental design). Increasing the complexity of the tasks 
allowed us to increase the variance, to avoid ceiling effect in performance and to better distinguish between low 
and high performers. The task with mental manipulations allowed us to assess the contribution of different WM 
components. Although even the simple retention of information involves executive components of WM, the 
executive load of retention is tangibly weaker than the load of mental manipulations with the same content. The 
manipulation task possesses all the properties that the retention task does but additionally, it involves executive 
components in a much larger extent. Thus, the differential score between the spectral power in the tasks allowed 
us to derive a neural index of executive components of WM – executive index. We hypothesized that (1) the 
power of alpha oscillations would be related to the capacity of the short-term storage component of WM, (2) the 
power of frontal midline theta would be related to the efficiency of the executive components of WM, and (3) the 
latter mechanism, but not the former one, would be related to the overall memory performance.

Results
task performance. The accuracy was worse in the manipulation task and monotonically decreased 
with increasing WM load (main effect of Task: F(1, 155) = 431.8, η2 = 0.736, p < 0.001; Load: F(2, 307) = 138.8, 
η2 = 0.472, p < 0.001). The significant Task × Load interaction (F(2, 305) = 22.1, η2 = 0.125, p < 0.001) resulted 
from the fact that load increment from 6 to 7 letters yielded a strong drop of accuracy in the retention task but 
no effect in the manipulation task (see Fig. 1B). All other pairwise differences were significant except the non-
significant difference in performance between Retention of 7 and Manipulation of 5 letters.

time–frequency analysis. We employed the linear mixed effects models (LME) to explore the relation-
ship between behavioral performance (quantified as average accuracy across all conditions) and the spectral 
power in the theta frequency band. Although we used LME with a continuous Performance variable for statisti-
cal inference, for the ease of data interpretation and illustration purposes, the whole sample was median-split 
into the high performance (N = 78) and low performance (N = 78) groups on the basis of their average accuracy 
across all conditions.

As can be seen in Fig. 2, the high performance group exhibited a stronger theta increase in the Manipulation 
task than in the Retention task. This Task by Performance interaction (p = 0.004) resulted from the association 
between the relative theta power and behavioral performance being positive in the Manipulation task but nega-
tive in the Retention task (see Fig. 2 and Supplementary Table S1 for full statistical output).

Then, we correlated WM performance with the difference between theta in Manipulation and Retention tasks 
to test the hypothesis on the role of executive components of WM in individual differences. The larger was the 
difference between baseline normalized theta power in Manipulation and Retention conditions, the better the 
individual WM performance (Spearman’s rho = 0.24, p = 0.002) (see Fig. 2C and Supplementary Figure S5 for 
full correlation matrix).

No significant main effect (p = 0.359) or interactions with Performance (Task x Performance: p = 0.454) were 
found in the alpha frequency band (see Fig. 3 and Supplementary Table S2).

Beta power negatively related to WM performance in the Manipulation task but not in the Retention task 
(Task by Performance interaction: p < 0.001; see Fig. 4 and Supplementary Table S3). Like it has been done with 
the theta activity, a subtraction of Retention beta from Manipulation beta was taken as an index of executive 
WM components. The correlation between this index and WM performance had similar magnitude as yielded 
in the analysis of theta (rho = − 0.26, p = 0.001), but with the opposite sign (see Fig. 4). Thus, better performance 
was related to lower beta activity.

Because the correlations of beta and theta executive indices with performance are similar, we tested whether 
the two represent the same underlying mechanism. The correlation between the constructs was in an expected 
direction but not statistically significant (rho = − 0.12, p = 0.124). Another way to test independence of the 

Figure 1.  (A) The experimental paradigm. (B) Average performance in 6 conditions. Error bars are standard 
errors of the mean. (C) Distribution of overall performance stacked into 25 bins.



3

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16090  | https://doi.org/10.1038/s41598-020-72940-5

www.nature.com/scientificreports/

executive indices is to use Bayesian linear regression. Employing this approach, we, first, compared all three 
possible models—only difference score beta, only difference score theta, and a combination of both difference 
scores as IVs—with the intercept only model. Second, we compared the one predictor models with the two pre-
dictors model. The model preferred by Bayes factor is the two predictors model (BF = 135.48), and the model is 
14.61 times better than only theta (BF = 9.27), and 3.85 times better than only beta model (BF = 35.23). The fact 
that the highest Bayes factor was yielded by the two predictors model suggests that their contribution is largely 
independent. Thus, theta and beta may play independent roles in individual differences in WM.

To check the reliability of the above effects we used a residual change score instead of difference as difference 
scores. Using a residual change scores for theta (rho = 0.24, p = 0.003) and beta (rho = − 0.28, p < 0.001) success-
fully replicated the results obtained with the difference scores. The correlation between alpha and performance 
remained non-significant (rho = − 0.06, p = 0.49).

Discussion
We found that two EEG indices of the executive components of WM (calculated as the difference between the 
relative spectral power in the retention and the manipulation conditions or, alternatively, as residual change 
scores) significantly correlated with WM performance in a large sample of healthy individuals. These findings 
confirm our hypothesis (iii) stating that oscillatory associates of the executive WM components, but not of the 
storage component, are related to WM performance. This is congruent with previous behavioral research indi-
cating that individual differences in executive functions were better predictors of WM capacity than differences 
in short-term  storage30,32,33.

Figure 2.  Relationship between theta power at Fz and WM performance. (A) Time–frequency maps in low (top 
panels) and high (bottom panels) performance groups in retention and manipulation tasks. Semi-transparent 
boxes mark time–frequency windows of interest (4–8 Hz, last 6 s of the delay). The first vertical bar marks the 
onset of encoding; the second one marks the onset of the delay; the third one marks the beginning of the time–
frequency window of interest; and the fourth one marks the onset of retrieval. (B) The time dynamics of theta 
activity in Retention, Manipulation tasks and their difference: the result of subtraction of theta relative power in 
the retention task from the power in the manipulation task (executive index). The width of the line represents 2 
standard errors of the mean. (C) Left panel: correlation of WM performance in the manipulation and retention 
tasks. Right panel: correlation of WM performance and the executive index. Performance is the average percent 
accuracy in all conditions.
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The positive correlation between WM performance and the theta executive index, (i.e., more theta, better 
performance) also confirms our hypothesis (ii). Although in STM tasks the demand on executive functions 
is considerably lower than in genuine WM tasks, it is not completely lacking. For example, when WM load is 
high, executive components of WM are needed to counteract interference and to suppress irrelevant informa-
tion. Few studies demonstrated a correlation between theta activity and performance in verbal (Zakrzewska & 
 Brzezicka28: N = 69, r = 0.32, Kwon et al.21: N = 13, r = 0.76) and visual (Kawasaki &  Yamaguchi20: N = 14, r = 0.51; 
Maurer et al.22: N = 24, r = − 0.41) short-term memory tasks that require only retention of, but no manipulation 
with, stimulus material. In contrast, we found no correlation between theta activity in the retention task and 
behavioral performance (rho = − 0.01, p = 0.88). Due to the known effects of saturation of brain activity measures 
with reaching higher levels of  load16,34–36, we hypothesized that the role of theta in retention tasks may be limited 
to only lower levels of load. However, even at the lowest level of 5 letters the correlation between theta during 
retention and the accuracy was not significant (rho = − 0.03, p = 0.67). Thus, theta increase during delay in simple 
tasks was not predictive to performance in genuine WM tasks.

Contrary to theta, the beta index of the executive control negatively correlated with WM performance (i.e., 
more beta, worse performance). This finding was not predicted by any hypothesis because the literature concern-
ing this relationship is too scarce. Probably the only comparable study is a spatial WM MEG  experiment37,38. Both 
publications reported a negative correlation between beta (15–20 Hz) and behavioral performance. Although 
the two reports shared the same sample, the localization of the correlation was different: WM performance cor-
related with beta activity in the right superior parietal lobule in one paper, and in the left dorsolateral prefrontal 

Figure 3.  Relationship between alpha power over posterior ROI (P3, T5, O1, P4, T6, O2) and WM 
performance. (A) Time–frequency maps in low (top panels) and high (bottom panels) performance groups in 
retention and manipulation tasks. Semi-transparent boxes mark time–frequency windows of interest (9–14 Hz, 
last 6 s of the delay). The first vertical bar marks the onset of encoding; the second one marks the onset of 
the delay; the third one marks the beginning of the time–frequency window of interest; and the fourth one 
marks the onset of retrieval. (B) The time dynamics of alpha activity in Retention, Manipulation tasks and 
their difference: the result of subtraction of alpha relative power in the retention task from the power in the 
manipulation task (executive index). The width of the line represents 2 standard errors of the mean. (C) Left 
panel: correlation of WM performance in the manipulation and retention tasks. Right panel: correlation of WM 
performance and the executive index. Performance is the average percent accuracy in all conditions.
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cortex and the bilateral superior temporal gyrus in the other. Moreover, beta activity in the two reports correlated 
with two different indexes of WM performance. These inconsistencies cast doubt on the reliability of the results.

Beta desynchronization may reflect switching internal attention between the reorganized set of letters and 
the initial set during the manipulations. Even when attention shifts from one object to another occur without eye 
movements, the shifts activate the same cortical areas as real eye  movements39. A good example is the activation of 
frontal eye fields (FEF) found in a spatial manipulation  task40. If the beta activity observed in our study is related 
to activation of motor control networks, then why was it related to individual differences in WM? Repetitive 
saccade eye movements during delay were shown to increase episodic memory  performance41,42. The movements 
executed just before blocks of an attentional control task (Flanker) also improved performance in the  task43. The 
attentional enhancement by preactivation of fronto-parietal network nodes such as FEF was hypothesized to 
produce the above mentioned  effects43. Consistent with this idea, TMS delivered to FEF improved detection of 
targets in a visuospatial attention  task39, whereas a suppression of the same region by TMS decreased inhibitory 
 control44. It is admittedly a speculation at this point, but more efficient use of FEF to execute mental manipula-
tions would potentially facilitate WM performance in our study.

Our hypothesis (i) predicted a significant link between alpha activity and the short-term storage capacity. 
This hypothesis was not confirmed. Although this link can be expected on the basis of theoretical considerations 
(as mentioned above in the Introduction), empirical data are not very consistent. Correlations between WM 
capacity and posterior alpha can be strongly negative (Kawasaki &  Yamaguchi20: visual WM, N = 14, r = 0.66) or 
strongly positive (Kwon et al.21: verbal WM, N = 13, r = 0.75). Another study found no correlation between WM 
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Figure 4.  Relationship between beta power over central ROI (Cz, C4, C3) and WM performance. (A) 
Time–frequency maps in low (top panels) and high (bottom panels) performance groups in retention and 
manipulation tasks. Semi-transparent boxes mark time–frequency windows of interest (16–22 Hz, last 6 s of 
the delay). The first vertical bar marks the onset of encoding; the second one marks the onset of the delay; 
the third one marks the beginning of the time–frequency window of interest; and the fourth one marks the 
onset of retrieval. (B) The time dynamics of beta activity in Retention, Manipulation tasks and their difference: 
the result of subtraction of beta relative power in the retention task from the power in the manipulation task 
(executive index). The width of the line represents 2 standard errors of the mean. (C) Left panel: correlation of 
WM performance in the manipulation and retention tasks. Right panel: correlation of WM performance and the 
executive index. Performance is the average percent accuracy in all conditions.
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performance and relative alpha power in the Sternberg task (Sghirripa et al.25; N = 24). Better WM performance 
was associated, in some studies, with stronger alpha enhancement in more difficult tasks than in the easy tasks 
(Hu et al.19: N = 20, r = 0.55; N = 23, r = 0.59), in other studies, however, with stronger alpha suppression in more 
difficult tasks (Erickson et al.26: N = 60, r = 0.45; Fukuda et al.16: N = 28, r = 0.48). In a yet another study the positive 
correlation between the WM capacity and alpha modulation from lower to the higher load did not reach signifi-
cance (Roux et al.24: N = 25, r = 0.39). We calculated the alpha modulation index (within-subject linear regression 
coefficients of alpha power by Load), as used in the verbal WM study by Hu et al.19. The test attained significance 
neither for the overall task performance (rho = 0.04, p = 0.64), nor for the retention task only (rho = 0.03, p = 0.72).

Therefore, not all correlations obtained in the previous studies were replicated in a larger sample. One might 
suggest that our negative result is due to using only high-load conditions, and that stronger correlations would 
be obtained if we compared alpha between high-load and low-load conditions. Nevertheless, the individuals with 
higher WM capacity did not show signs of larger short-term storage that would have been reflected in the modu-
lation of alpha at the high levels of load. We suggest that instead it is the executive control as reflected in the theta 
activity that controls attention and minimizes the interference, thus determining an individual’s WM capacity.

The interference hypothesis of WM capacity assumes that WM is affected not only by external distractors but 
also by mutual interference between the  items45–47. Thus, the detrimental effect on memory precision is a func-
tion of the number of items stored in WM and the presence of the concurrent task. When WM load is high and/
or manipulations are required, the executive component of WM is needed to cope with interference. Perhaps, 
the resources that can be deployed to counteract interference are better represented in the higher performing 
individuals.

There is another possible mechanism to explain how executive processes may cope with increasing WM 
demands. Camos &  Barrouillet48 suggested that attention is involved in rapid refreshment of memory traces, thus 
preventing temporal decay of the WM content. The non-refreshed information fades out and in the worst case 
cannot be recovered. In extension of this model, beta and theta activity reflect the ability to maintain information 
in the active state by switching the focus of attention between items, thus defining the individual capacity limit.

Above we interpreted changes in posterior alpha rhythm as a reflection of the demand on the short-term 
storage component of WM. Another interpretation regards alpha as a mechanism of filtering information by 
gating only relevant sensory  stimuli49,50. If we accept this view, then either higher WM capacity individuals are 
no more efficient in the filtering out task-irrelevant information than lower WM capacity individuals, or the 
alpha filtering mechanism works only under moderate levels of memory load.

To summarize, our data indicate a close relationship between medial frontal theta, central beta activity, and 
the executive components of WM. Both oscillatory indices of executive processes, manifested in the theta (as 
we expected) and beta (unexpectedly) frequency bands, were related to behavioral performance in a verbal 
WM task. In contrast, we could not replicate the data indicating the important role of posterior alpha in WM 
performance. We can conclude that the ability to control attention plays a larger role in individual differences in 
WM than the capacity of the short-term storage.

Methods
participants. 186 individuals participated initially in the study. Eight participants with overall performance 
below 60% were excluded. Furthermore, a subsequent analysis revealed 22 EEG records with an excessive num-
ber of artefacts (less than 12 clean trials in any condition). Thus, 156 participants (82 females, mean age = 21.23, 
SD = 3.22) were included in the final sample. The participants had normal or corrected-to-normal vision and 
self-reported no history of neurological or mental diseases. All the participants were Russian native speakers. 
The experimental protocol was approved by the Ural Federal University ethics committee, and conducted in 
accordance with the Declaration of Helsinki. Informed consent was obtained from all participants.

Stimuli. Sets of Cyrillic alphabet letters written in capitals were used as stimuli. All letters (vowels and con-
sonants) had been selected randomly from the alphabet, had random order, and no repetitions in the sets. The 
pool of stimuli comprised 1200 sets of letters (400 per level of load) which were manually checked to not form 
any meaningful words. An analogue using Latin letters and English words is shown in Fig. 1.

A trial always began with an exclamation mark presented for 200 ms, which was followed by a fixation cross 
for 3000 ms. Participants were instructed to fixate on the cross whenever it appeared. Next, the word “forward” or 
“alphabetical”, presented for 600 ms, instructed the participants whether they would have to maintain in memory 
the original set as it was presented (retention task) or, first, mentally reorganize the letters into the alphabeti-
cal order and then maintain the result in memory (manipulation task). After that, sets of 5, 6 or 7 letters were 
demonstrated for 3000 ms followed by a delay period where a fixation cross was demonstrated for 6700 ms. At 
the end of the delay period, a randomly chosen letter from the previously presented set appeared on the screen 
together with a digit that represented the serial number of this letter. The letter-digit probe was presented for 
1000 ms. Depending on the task, the participants indicated whether the probe was on the corresponding posi-
tion either in the original set (retention task), or in the set resulted from alphabetical reordering (manipulation 
task). The participants were asked to press one of the computer mouse buttons (left or right) if the probe was 
correct and the other button otherwise. The two buttons were attributed to the correct and wrong probes in a 
counterbalanced order. The probe was correct in 50% of the trials, and the order of correct and incorrect probes 
was randomized. The next trial started after a blank interval that varied between 5000 and 5500 ms.

The experiment entailed six different conditions: maintenance in memory of 5, 6 or 7 letters in the alphabeti-
cal (manipulation condition) or forward (retention condition) order. Each condition had 20 consecutive trials. 
These six blocks of 20 trials were presented in a random order. Two practice blocks with 3 and 6 trials respectively 
were given shortly before the main experiment.
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During the experiment, the participants were seated in a comfortable armchair in front of a computer screen 
in a dark room. Stimuli were presented in white color on a black background in the center of the screen by using 
PsyTask software (Mitsar Ltd.). The distance to the screen was 1 m and the size of the letters was 1.2 × 1.2°.

eeG recording and preprocessing. The EEG was recorded from 19 electrodes arranged according to the 
10–20 system using Mitsar-EEG-202 amplifier with averaged earlobes reference. Two additional electrodes were 
used for horizontal and vertical EOG. EEG data were acquired with 500 Hz sampling rate and 150 Hz low-pass 
filter.

The procedure of EEG artifacts suppression and removal was conducted in two steps. At the first step, in 
order to suppress ocular activity artifacts, the independent component analysis (ICA) was performed using 
AMICA  algorithm51. The components clearly related to blinks and eye movements were identified and removed 
after visual exploration of the data. At the second step, epochs still containing artefacts were visually identified 
and discarded.

EEGLAB  toolbox52 for MATLAB was used for the data preprocessing.

time–frequency analysis. Before the time–frequency analysis, 1 Hz high-pass, 45 Hz low-pass and 50 Hz 
notch filters were applied with the EEGLAB firfilt function. Then, epochs in [− 14,200 2200 ms] interval where 
0 is the onset of the probe were created.

The EEG time series in each epoch were convolved with a set of complex Morlet wavelets. The wavelets were 
defined as the product of a complex sine wave and a Gaussian window – e−i2π tf e−t2/(2σ 2) , where t is time, f is 
frequency. σ is the width of the Gaussian, which set according to n/(2πf), where n is the number of cycles – the 
parameter defining the time–frequency precision trade-off. The frequency f increased from 1 to 45 Hz in 45 
linearly spaced steps, and the number of cycles n increased from 3 to 12 in 45 logarithmically spaced steps. 
From the resulting complex signal, the power of each frequency at each time point was obtained. The power 
was baseline-normalized by computing the percent change of the power in respect to [− 11,500 − 10,500] ms 
interval (i.e. “Baseline” in Fig. 1).

The time–frequency analysis was performed by means of the Fieldtrip  toolbox53.

Statistics. In order to decrease the number of factors employed in statistical calculations we defined fre-
quency-channels regions of interest (ROI) with maximal representation of certain frequencies in certain group 
of channels. Thus, theta (4–8 Hz) had the maximal power at Fz, alpha (9–14 Hz) at posterior channels (left: T5, 
P3, O1; right: T6, P4, O2) and beta (16–22 Hz) at central channels (C3, Cz, C4) (see Supplementary materials for 
time–frequency maps at each channel).

Then spectral power was averaged in the ROIs in a 6 s time interval corresponding to the delay period (see 
Fig. 2). We excluded the initial 700 ms from the onset of Delay period. As can be seen in Fig. 2 and Supplementary 
Fig. 1, the first few hundred milliseconds after the onset of the delay contain evoked response activity that could 
distort the frequency data if not  rejected54–56.

For statistical analysis of behavioral data, we employed repeated-measures analysis of variance (RM ANOVA) 
with factors Task (2 levels: Manipulation, Retention) and Load (3 levels: 5, 6, 7 letters to memorize).

For EEG data analyses we employed linear mixed-effects models (LME). As recommended by Barr et al.57, 
first, we always tried to fit the maximal model. In the case of the convergence problem, we first tried to fit the 
model with main effect random slopes (no interactions). If it converged, next, we again followed the advice by 
 Barr58 and reduced the maximal random effect structure keeping the highest-order interaction slope (e.g., Task 
x Load x Hemisphere for alpha rhythm) and slopes that showed significant interactions with Performance at 
the previous step. Before fitting the models, continuous independent variables were centered around zero, and 
qualitative variables were effect coded.

For beta and theta rhythms the maximal model included Task and Load, Performance and all possible interac-
tions as fixed effects, Participant as a grouping random intercept effect, and combination of Task, Load and their 
interactions as random slopes. For alpha activity fixed and random effects of Hemisphere (2 levels: left, right) 
were additionally included, because alpha frequently shows an asymmetry during delay  period59. Performance 
was calculated as the mean percentage of correct answers averaged over all conditions. In this case Performance 
plays the role of a personal trait and allows a straightforward interpretation of possible interactions with the 
other fixed effects. Single trial EEG data entered the analysis.

lme4  package60 and function lmer in R was used to fit the models. For the calculation of p-values we used 
lmerTest  package61 with the default Satterthwaite’s degrees of freedom approximation.

We decided to use the alpha level of 0.005, as such a threshold exhibits higher evidential value and may also 
help to improve reproducibility of newly discovered effects (e.g. see Benjamin et al.62 but also Miller & Ulrich 
63 for another opinion).

Reliability estimates (Cronbach’s alpha) for behavioral and EEG variables in the manipulation and retention 
tasks are reported in Supplementary Table S4.

All statistical calculations were performed in R, version 3.6.364.

 Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on request, without undue reservation.
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