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A B S T R A C T   

The present review is the result of a one-day workshop on open science, held at the Annual Meeting of the Society 
for Psychophysiological Research in Washington, DC, September 2019. The contributors represent psycho
physiological researchers at different career stages and from a wide spectrum of institutions. The state of open 
science in psychophysiology is discussed from different perspectives, highlighting key challenges, potential 
benefits, and emerging solutions that are intended to facilitate open science practices. Three domains are 
emphasized: data sharing, preregistration, and multi-site studies. In the context of these broader domains, we 
present potential implementations of specific open science procedures such as data format harmonization, power 
analysis, data, presentation code and analysis pipeline sharing, suitable for psychophysiological research. 
Practical steps are discussed that may be taken to facilitate the adoption of open science practices in psycho
physiology. These steps include (1) promoting broad and accessible training in the skills needed to implement 
open science practices, such as collaborative research and computational reproducibility initiatives, (2) estab
lishing mechanisms that provide practical assistance in sharing of processing pipelines, presentation code, and 
data in an efficient way, and (3) improving the incentive structure for open science approaches. Throughout the 
manuscript, we provide references and links to available resources for those interested in adopting open science 
practices in their research.   

1. Introduction 

Since its formal inception during the renaissance age, organized 
western science has involved the sharing of theories, methods, and data 
within the community of scholars (Gribbin, 2002). What has once relied 
on letter correspondence between few experts in a given field has over 
time evolved into a large-scale, international industry (Lightman, 2016). 
At the same time, the methods used and the data obtained in fields such 
as psychophysiological research have become increasingly complex, 
reflective of technical innovation in areas such as data recording, 

analysis, statistical evaluation, and modeling (Kappenman and Keil, 
2017). The same innovations also provide previously unheard-of op
portunities for open science practices. Some of these practices have a 
long tradition in psychophysiology, notably sharing open stimulus sets 
(e.g., Bradley and Lang, 2007). There is however an emerging consensus 
that open science approaches provide additional, much needed benefits, 
when extended to data, analytical tools, and the process of study design 
and hypothesis testing. (Larson, 2020). Beyond addressing concerns 
about the replicability of published findings (Open Science Collabora
tion, 2015; Pashler and Harris, 2012), discussed elsewhere in this issue, 
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open science practices may address other extant challenges in the field of 
psychophysiology by heightening transparency, fostering inclusivity 
and diversity, addressing inequalities in access to scientific resources, 
and ultimately helping to improve graduate and undergraduate training. 

A recent study commissioned by the U.S. National Science Founda
tion aimed to “define reproducibility and replicability accounting for the 
diversity of fields in science and engineering” and to “determine if the 
lack of replicability and reproducibility impacts the overall health of 
science and engineering as well as the public’s perception of these fields” 
(National Academies of Sciences, 2019). Among the definitions, find
ings, and recommendations offered by this committee were formal 
definitions of reproducibility and replicability. Given their prominence 
in the context of open science in psychophysiology, we list some of these 
emerging concepts and their definitions in Table 1. 

Improving reproducibility and replicability by widely adopting open 
science practices may help overcome a trend in which publishers and 
grant agencies have incentivized research towards novel, surprising 
findings, often at the cost of establishing a robust premise through 
programmatic research (Bradley, 2017). Notably, technical innovation 
and increased computing power provide more options in the realm of 
data analysis, and also offer powerful tools for constraining hypotheses 
through mathematical modeling rather than expressing them in se
mantic narratives (Oberauer and Lewandowsky, 2019). For example, in 

simulation studies, a model-driven approach of systematically testing 
quantitatively specified hypotheses has been shown to assist in over
coming the societal and scientific cost associated with publishing non- 
replicable results (Lewandowsky and Oberauer, 2020). With the rise 
of complex data analysis techniques available to psychophysiologists, 
concepts such as computational reproducibility (Table 1) have increas
ingly garnered attention (Keil et al., 2014). Paralleling developments in 
other fields of science, there is an emerging perspective that mere 
publication of findings from computational research is incomplete un
less it is computationally reproducible. The use of proprietary, closed, 
and un-standardized hardware and software is unfavorable for evalu
ating and comparing methods and results across studies (Begley, 2013; 
Donoho, 2010). Furthermore, narrative and graphical communication of 
study results and conclusions, when offered in isolation, is unfavorable 
both to reproducing and to building upon prior results, if code and 
computing environments are not also made available (Schwab et al., 
2000). These challenges have been discussed for decades, as illustrated 
by Buckheit and Donoho (1995) “An article about computational science 
in a scientific publication is not the scholarship itself, it is merely 
advertising of the scholarship. The actual scholarship is the complete 
software development environment and the complete set of instructions 
which generated the figures.” 

Open science approaches are widely seen as effective in addressing 
these challenges. As illustrated in Fig. 1, practices that enable direct 
replication and reproduction of experimental and analytical processes 
amplify the iterative benefits of hypothesis-guided but also explorative 
research. In the following, we identify key elements of open science, 
some with properties unique to the field of psychophysiology. The 
present report also considers the implications of open science practices 
for researchers at different institutions and at different career stages. 
Readers interested in early-career issues vis-à-vis open science are 
directed to the recent review by Allen and Mehler (2019). Here, we give 
an overview of resources and avenues that are available to researchers 
and offer different perspectives regarding the potential benefits of open 
science practices. More specifically, we discuss challenges and per
spectives for data sharing, preregistration, and multi-site studies. 

2. Data and analysis pipeline sharing 

This review is written at a time during which the COVID-19 
pandemic is severely affecting scientific practice. This world-wide 
health crisis has limited many researchers’ ability to collect data, 
travel between collaborating sites, and conduct in-person training. In 
this situation, the benefits of data sharing have become more apparent 
and have drawn attention to data sharing efforts already underway. For 
example, EEG/ERP researchers now have access to an open, well 
documented data set of high-quality EEG, recorded while the same n =
40 individuals worked on six different experimental paradigms (Kap
penman et al., 2020). This ERP CORE data set can be accessed at 
https://erpinfo.org/erp-core, together with experimental control code 
written in Presentation software, and analysis pipeline suggestions. 
Qualified researchers may also request access to the NIMH data archive 
at https://nda.nih.gov/, which contains harmonized, item-level data of 
all types, including a wide range of psychophysiological data. Re
searchers contributing to such sharing efforts, as well as those sharing 
individual experimental data in suitable repositories facilitate the ben
efits discussed above, including those related to fostering programmatic 
well-powered studies across laboratories. To maximize these benefits 
however, progress in the following areas is needed. 

2.1. Data format standardization and harmonization 

Psychophysiological data are intrinsically multivariate in nature, 
containing behavioral and self-report data, in combination with often 
several physiological measures such as heart rate, electrodermal activ
ity, pupil diameter, respiratory rate, fMRI, EEG, MEG, and many more. 

Table 1 
Core concepts of open science practices in psychophysiology, discussed in this 
article.  

Concept Definition/implementation 

Reproducibility & 
Replicability  

• (Computational) Reproducibility is achieved 
when identical results are produced from archived 
original study data. This outcome requires access to 
raw data along with access to analysis code, 
conditions of analysis, and computing environment.  

• Replicability is achieved when the outcome of a 
replication study confirms or supports the original 
study. A replication study must match the 
experimental settings, measurement units, and 
treatments of an original study. 

Open access Open access is a multifaceted construct that includes 
but is not limited to:    

• Data sharing  
• Data format harmonization  
• Workflow provenance  
• Pipeline sharing. Reproducible Pipelines are 

computationally reproducible analysis workflows 
that include code, intermediate files, electronic 
records of all data validation conditions and user 
selected signal optimizations. 

Pre-registration & 
Registered Reports  

• Pre-registration refers to a practice in which 
researchers publicly deposit a time stamped 
statement regarding a planned study, minimally 
including a description of methods and hypotheses.  

• The Registered Reports format is a relatively 
standardized publication type in which a study 
proposal that includes theory, hypotheses, and 
methods (Stage 1) is peer-reviewed and published 
prior to data collection. The final report (Stage 2) is 
then accepted if consistent with the Stage 1 report, 
regardless of findings. This format thus fosters pub
lication of negative findings and non-replications. 
For example, Registered Reports are available at this 
journal, and as of 2020 at the journal 
Psychophysiology. 

Multi-site studies Studies in which the same experimental settings, 
measurement units, and treatments are conducted in 
parallel at multiple sites such as multiple universities, 
multiple laboratories, etc. As such, multi-site studies 
are akin to replication studies, but are typically 
conducted at the same time, rather than after 
publication of the original study.  
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Reflective of a wide range of manufacturers and industry standards, a 
wealth of different data formats are used for storing these measurement 
modalities to disk, and for annotating them with event markers, con
dition labels, channel locations, etc. Although opening the primary data 
sometimes does not represent a major barrier for researchers, different 
data formats and measurement modalities tend to come with different, 
sometimes idiosyncratic, conventions for how event markers are recor
ded, how conditions are labeled, and how the data are organized within 
and across participants. Furthermore, psychophysiological measures 
differ qualitatively in their dimensionality, their digitization rate, and 
their spatio-temporal resolution, aggravating the unfavorable effects of 
variability in data organization and formatting rules between different 
laboratories. 

Initial efforts towards harmonization have been made, aiming to 
standardize neuroimaging data formats, e.g. the so-called BIDS format, 
available for EEG, MEG, fMRI and intracranial EEG data (Gorgolewski 
et al., 2016; Niso et al., 2018; Pernet et al., 2019). Building on these 
efforts, further attempts are desirable to accommodate the needs of a 
wider range of scientists. Furthermore, extending harmonization efforts 
towards other psychophysiological measures such as electrocardiogram, 
electrodermal, or pupil data are needed. Standardized formats not only 
benefit data sharing, but are a requirement for developing widely 
accepted and convenient analysis pipelines that readily use a shared 
input format, as evident in recent developments in fMRI research 
(Esteban et al., 2019). Harmonization would likely benefit from adopt
ing a scope beyond individual measures (e.g. beyond EEG/MEG) and 
potentially establish formats and pipelines that foster integrative or joint 
analysis of multi-modal data, in line with the tradition of psychophysi
ological research. At present, many researchers share data in the binary 
MATLAB “mat” format, or in other MATLAB-based formats (Delorme 
and Makeig, 2004). Despite their proprietary origin, these formats can 
be read into a variety of (non-MATLAB) analysis platforms and 
computing environments such as R, Python, or Julia. In addition, 
widespread adoption of free Python-based tools (Gorgolewski et al., 
2011; van Mourik et al., 2018) and meta-formats may assist in reducing 

the effects of remaining paywalls (e.g., for a MATLAB license, or for 
commercial analysis tools). Python-based tools have also opened ave
nues towards harnessing the power of cloud-based, intelligent analysis 
pipelines that have emerged over the past decade (Zeng et al., 2020). A 
recent analysis of large-scale data sharing efforts in fMRI research 
showed that the opportunities and benefits associated with data sharing 
(larger sample sizes, more generalizability across different sample 
characteristics, financial savings) outweigh often-cited concerns (fear of 
being scooped, differences in data quality, usage with questionable 
motives), especially when effective harmonization is in place (Milham 
et al., 2018). Thus, it would be helpful to expand these efforts to other 
psychophysiological measures besides fMRI. 

2.2. Visibility and searchability of shared data 

Many data sharing venues exist and there is currently no widely 
adopted mechanism for indicating to the community where a certain 
shared data set can be found. As discussed above, even in situations 
where successful data sharing occurs, datasets are often cumbersome 
and esoteric, provided without data dictionaries that allow researchers 
to fully understand the nature of the shared data. At the time of writing, 
psychophysiological data are shared via local or institutional servers, via 
neuroscientific platforms (e.g. openneuro.org), and via unspecific re
positories (e.g. the open science framework https://osf.io, databrary 
https://nyu.databrary.org, dryad https://datadryad.org/stash), several 
locations on github (e.g., https://github.com/meagmohit/EEG-Dataset 
s), or figshare (https://figshare.com). As a consequence, data may be 
shared but not found by interested researchers. For that reason, 
assigning a permanent digital object identifier is recommended, which 
enables searching, finding, and citing the resource (Stodden and Miguez, 
2014; Stodden et al., 2016). Finding well documented data may repre
sent a more severe challenge for early career researchers and researchers 
from primarily undergraduate institutions, compared to established PIs 
with extensive professional networks who typically have more oppor
tunity for exchange with other researchers at grant review panels, 

Fig. 1. Open science practices affect the research process at multiple levels. 
The process of experimental research, involving steps ranging from hypothesis generation to drawing conclusions, is positively affected by various open science 
practices such as pre-registration and multi-laboratory studies. Direct replication requires sequential repetition of measurements and treatments. In a multisite study, 
identical measurements and treatments are carried out simultaneously between multiple similar experiment settings. Replicability in a multisite study thus supports 
the robustness of study outcomes. In this context, Computational Reproducibility addresses *Researcher Degrees of Freedom by constraining the influences of user 
defined parameters, code, and computing environment on analysis outcome. Likewise, preregistration precludes questionable research practices such as HARKing 
(hypothesizing after the results are known) by eliminating the possibility of outcome-dependent decision making. 
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conferences, and through the journal review and editing process. 
One straightforward way for making data visible is to connect a 

publication with its underlying data in a repository, which increasingly 
occurs at the stage of a preprint publication (Cragin et al., 2010). Pre
print servers such as PsyArXiv and BioRxiv are widely used and well 
suited for psychophysiological research. In addition, several journals 
offer repositories in which data can be shared and linked to the 
respective publication. Although this implies that data files need to be 
organized in a fashion that allows sharing already during the manuscript 
writing phase, an increasing number of authors now opt for the data 
being made public after publication (e.g. after an embargo period) or for 
data being made public without a corresponding publication. In this 
regard, ethical and intellectual property aspects gain additional signif
icance (Carroll, 2015). For example, embargoes may be implemented in 
order to protect early career researchers, or researchers from labora
tories with limited resources, from their data being used, perhaps more 
rapidly, by those with more abundant resources. 

2.3. Variability of experimental procedures 

Paradigm sharing is made difficult by the wide array of software 
solutions used for stimulus presentation and response registration. 
Paralleling data formats, there are lab-specific idiosyncrasies in terms of 
how stimulus control software interacts with the recording environment 
and in terms of how event markers are sent and stored. Event markers 
may be stored in the data file as a mere time stamp, to be matched with 
condition names in an external log file or dedicated marker file, or 
detailed condition codes may be stored as part of the data or header file. 
Although some of these sources of variability can be addressed by extant 
standard formats available for neuroimaging measures, such as BIDS 
(Gorgolewski et al., 2016; Niso et al., 2018; Pernet et al., 2019), there 
are several remaining barriers that impede the successful sharing of 
paradigms and data. The authors identified the following practical steps 
towards overcoming these barriers, some of which are already being 
implemented: 

First, broad sharing of paradigms and experimental control code, 
despite diversity in coding and formatting, heightens the probability 
that a researcher will find a given paradigm in their preferred platform, 
such as Presentation, PsychoPy, Psychtoolbox, E-Prime, etc. In addition, 
multi-site, coordinated studies (see section below) assist in identifying 
the amount of convergence/divergence between standard paradigms (e. 
g., an arrow flanker task, a picture viewing task), which ultimately en
ables forming a library of standard paradigms for multiple presentation/ 
stimulation platforms without asking researchers to adopt one common 
standard presentation software—widely seen as an unreasonable and 
unpractical approach. Researchers may also want to share paradigms 
together with the resulting data to allow comparison of outcomes with 
standard paradigms across different laboratories, or to compare their 
own data with widely accepted gold-standard data (e.g., Kappenman 
et al., 2020). Likewise, calibration scripts that display simple stimuli at 
known timing and spatial locations may well be shared among labs to 
establish convergence/divergence of timing accuracy and psychophys
iological outcome measures with different stimulus hardware and 
recording setups present in different laboratories. 

Second, precise documentation of the presentation setup (monitor, 
recording setup, stimulation hardware and software) is encouraged by 
extant guideline papers (e.g., Keil et al., 2014). Such precise reporting in 
published papers enables replication of setups, particularly relevant for 
researchers about to establish their own laboratories. Registered reports, 
which tend to provide greater detail regarding stimulus presentation and 
data analysis, are therefore particularly helpful in the context of para
digm sharing. 

2.4. Variability of analysis workflow procedures 

Psychophysiological data are composed of multivariate time series. A 

substantial range of algorithms exist for cleaning and analyzing these 
signals. Although the diversity in algorithms is greatly beneficial for 
addressing a wide variety of problems and questions, the number of 
algorithms and the lack of gold standard methods pose a significant 
challenge to reproducibility. During preprocessing and data analysis, 
researchers make choices that are often simultaneously justifiable, 
motivated, and arbitrary (Simonsohn et al., 2019). For instance, in a 
recent report from the Neuroimaging Analysis Replication and Predic
tion Study, 70 independent research teams analyzed the same fMRI 
dataset and no two teams used the same workflow pipelines (Botvinik- 
Nezer et al., 2020). Although few such studies exists for other psycho
physiological data (Miltner et al., 1994; Drisdelle et al., 2017; Sandre 
et al., 2020) the flexibility and diversity in preprocessing and data 
analysis pipelines is comparable across psychophysiology methods (e.g., 
EEG, MEG, and fMRI). This emphasizes the need for a detailed 
description of the methods used in publications (Keil et al., 2014). 
Another, and perhaps more desirable approach may be to share the full 
algorithmic pipeline in addition to the data, to allow other researchers to 
perform an in-depth analysis of the methods, reproduce the analysis, 
and/or apply them to their own data. However, exacerbating the 
problem, these preprocessing and data analytic algorithms are often 
implemented in different programming environments and vary in their 
availability. For example, some algorithms use commercial or pre
compiled user interfaces, and many are specific to a psychophysiological 
measure or to a given piece of hardware. Thus, sharing analytical 
pipelines does not always have the desired outcome of enabling other 
researchers to reproduce the analysis, because they may not have access 
to the software needed, may not know how to use it, and may not have 
the required hardware. Increasingly, free versions of previously 
restricted algorithms exist, in various computing environments. 
Furthermore, open source analysis toolboxes for EEG/MEG analysis are 
increasingly used in the field, many with plugins for additional psy
chophysiological measures. These include, but are not limited to, the 
following toolboxes: Brainstorm (Tadel et al., 2011), EEGLAB (Delorme 
and Makeig, 2004), emegs (Peyk et al., 2011), FieldTrip (Oostenveld 
et al., 2010), MNE/MNE-Python (Gramfort et al., 2013), and SPM (Lit
vak et al., 2011). 

Even when researchers are able to access the preprocessing and data 
analysis pipelines shared by others, the majority of analytical methods 
routinely used in psychophysiology require user intervention. If such 
methods are to be successfully shared, they would therefore need to be 
accompanied by specific instructions to ensure exact replication. These 
instructions are often implicit or depend on the user’s expert knowledge 
or extensive training (see e.g. Miltner et al., 1994). Depending on the 
subjective judgment of researchers, this reliance on expert knowledge 
may present a further obstacle to replication, which can be especially 
problematic for large, multi-site studies in which one expert cannot 
analyze all the data. Recent open source efforts have developed pre
processing and data analytic pipelines that overcome several of the 
challenges listed above by automating steps that require user input (e.g., 
ADJUST, Mognon et al., 2011; ICLabel, Pion-Tonachini et al., 2019; 
FASTER, Nolan et al., 2010; Adjusted ADJUST, Leach et al., 2020) or 
providing fully automated pipelines that can be implemented by other 
research groups relatively easily. Some of the existing pipelines include 
the PREP pipeline (Bigdely-Shamlo et al., 2015), HAPPE & BEAPP 
pipeline (Gabard-Durnam et al., 2018; Levin et al., 2018), MADE pipe
line (Debnath et al., 2020), EPOS pipeline (Rodrigues et al., 2020), and 
CTAP toolbox (Cowley et al., 2017). Some pipelines automatize the 
estimation and application of parameter settings previously set by the 
user (Engemann and Gramfort, 2015; Jas et al., 2017). Several of these 
pipelines allow users to set specific parameters that may improve 
pipeline performance on a particular dataset. These parameters can then 
be reported, allowing others to replicate the results obtained. 

The sharing of analytical pipelines ultimately relies on collaboration 
and the exchange of code that others can understand and adapt. This 
requires excellent documentation, including examples that allow others 
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to more easily comprehend the algorithms’ functions (Eglen et al., 
2017). It also requires writing clean and well-commented code (Cohen, 
2017). The authors recognize that advancing computational reproduc
ibility through pipeline sharing requires new efforts in training at the 
graduate and undergraduate level, providing new researchers with 
powerful computing and documentation skills. In addition, a growing 
number of universities have employed Research Software Engineers, 
who support the development and maintenance of sustainable and 
replicable research computing environments (Cohen et al., 2020). 
Where intra-institutional assistance is not feasible, various online com
munities are open and accessible. Organizations and programs that 
promote open development and sharing of code range between pru
dently structured training to unstructured but extensive exchange of 
information. 

New programs such as the Code Refinery initiative (http://coderef 
inery.org), available in Nordic and Baltic countries also provide sup
port along with storage and curation services and training for re
searchers interested in sharing clean, reproducible, computer code. 
ROpenSci (https://ropensci.org) utilizes a framework for the review and 
maintenance of open source scientific code (Ram et al., 2018). Although 
the ROpenSci community centers on code written in the R language, 
there are parallel efforts to adapt these practices towards code review 
based on other programming languages. The Carpentries offer training 
in use and development of scientific code in R and Python as well as 
pedagogical training to teach and facilitate open practices (Shade and 
Teal, 2015; Wilson et al., 2017; Wilson, 2019). Many organizations 
include focus closely on the side of specific psychophysiology disci
plines: BrainHack (https://brainhack.org), ICNF (https://training.incf. 
org), NeuroStars (https://neurostars.org), (ReproNim https://www.rep 
ronim.org), Neurodata without borders (https://www.nwb.org), Neu
roVault (https://neurovault.org). 

Psychophysiological research is likely to benefit from utilizing novel 
ways for sharing and illustrating code through applications that provide 
interactive documents (e.g., live scripts in MATLAB), integrate multiple 
programming languages (e.g., Jupyter Notebooks, Rule et al., 2019), and 
even permit video streaming or recordings of the actual data analysis 
process (e.g., YouTube or Twitch). In addition to providing a more 
transparent data analysis process, sharing data analysis pipelines and 
making these pipelines more accessible by leveraging these new tools 
could serve as a training resource for others, encourage good coding 
habits, and promote reproducibility in psychophysiology. 

2.5. Comparison of analysis pipelines 

Future research will systematically quantify the convergence and 
difference of similar analytical procedures (e.g., different types of 
wavelet analysis, or different algorithms for blink interpolation in pupil 
data), as well as examining the impact of other decisions during data 
analysis (see next section). So-called multiverse studies (Steegen et al., 
2016) may assist in this process. One obstacle towards this goal is that 
the criteria for evaluating and comparing pipelines are currently un
clear. Desirable characteristics would be pipelines that a) maximize the 
usage of available data (i.e. do not discard excessive amounts as arti
fact), b) provide the best signal-to-noise ratio, c) yield more reliable 
measures, and d) follow a “Glass Box” philosophy (i.e., automated, but 
transparent). Importantly, some of these characteristics may differ by 
study characteristics such as participant population, hardware, experi
mental procedures, or measures of interest. As such, examining which 
pipelines or which algorithms within different pipelines perform best 
under which circumstances represents an important first step towards 
developing gold standard data analysis pipelines. Indices for quantifying 
data quality in a unitless fashion are useful steps towards this goal. 
Psychophysiology has a long tradition of reporting signal-to-noise ratios 
for dependent variables (Regan, 1989), and more recently developed 
indices of data quality in ERP research also hold promise for objectively 
assessing data quality (Junghofer et al., 2000; Luck et al., 2020). Widely 

using and reporting such measures will aid transparency and 
reproducibility. 

Although the characteristics described above are crucial for maxi
mizing data usage and obtaining reliable measurements in a transparent 
and consistent manner, they do not address concerns about the construct 
validity of the measures obtained. One promising way to start quanti
fying the impact of different preprocessing and data analysis decisions 
are specification-curve (Simonsohn et al., 2019) and multiverse-analysis 
(Steegen et al., 2016) approaches. Rather than presenting one analysis 
pipeline, these studies involve performing all reasonable analytic steps 
using reasonable specifications. Such an approach can help determine 
the impact that different (and often arbitrary) choices in data pre
processing and data analysis have on the results and conclusions. Thus, 
specification-curve and multiverse-analysis approaches may provide 
novel insights into the impact that analysis pipelines have on the re
lations between psychophysiological measures and the theoretical con
structs or outcomes of interest. 

3. Preregistration 

Central goals of preregistration are to increase study transparency 
and to foster systematic and programmatic research. Preregistration 
encourages a researcher to consider and publicly state multiple facets of 
the project prior to data collection and analysis. For preregistration of 
psychophysiological studies, the Open Science Foundation (OSF) and 
University of Pennsylvania and Wharton School Credibility Lab’s AsPred 
icted.org offer the most compatible formats. Preregistration involves: (1) 
identifying study contributors; (2) detailing hypotheses; (3) detailing 
the research design and sampling plans – including a sample size 
rationale; (4) specifying variables; (5) detailing data processing and 
analysis plans – including data exclusion criteria; (6) Other important 
information such as exploratory data considerations, potential contrib
utor changes, etc. The open science framework contains examples of 
ERP and fMRI preregistrations (see e.g., Paul et al., 2020). 

Preregistration can take different forms, from registration of study 
goals on a suitable online platform, to a two-stage registered report 
formally overseen by one of many journals who offer this format (see e. 
g., Keil et al., 2020). It has often been noted that despite increasing 
transparency and accountability, preregistration practices are not a 
panacea for addressing all problems that have led to low replicability in 
biomedical and behavioral research (Chambers, 2019b). In the case of 
psychophysiological research, preregistration does not overcome poor 
statistical practices, lack of a systematic research program, or limitations 
of power analyses, nor does it address inadequate theory and lack of 
quantitative models (Szollosi et al., 2020). However, use of preregis
tration can help researchers and reviewers differentiate what aspects of 
a study were planned and what aspects were exploratory. Specifically, 
preregistration functions to address issues such as underreporting null 
findings and questionable scientific practices such as hypothesizing after 
the results are known (i.e, HARKing, see Fig. 1) and flexible data in
clusion/exclusion (i.e., cherry-picking) decision making (Chambers, 
2019a). The clear differentiation between a-priori hypotheses and 
exploratory analysis allows more rigorous hypothesis testing as well as 
more transparent exploratory research. Furthermore, students and early 
career scientists may benefit from a pre-registration, or stage 1 Regis
tered Report in different ways. For example, preregistration allows for a 
published record of a researcher’s contribution to a study, even if study 
completion takes a long time, or if the researcher leaves a laboratory 
before data collection has been completed or the data have been 
published. 

Many of the advantages of preregistration are particularly relevant to 
psychophysiological research: Pre-specifying recording and data anal
ysis pipelines, data reduction steps, and the composition of dependent 
variables assists in reducing researcher degrees of freedom (Wicherts 
et al., 2016). Publishing the full code and processing steps used facili
tates computational reproducibility, while also enabling the scientific 
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community to catch errors in the code, or clarify any misconceptions as 
to how it is used. Thus, these aspects of pre-registration address not only 
questionable practices but also assist in preventing and managing honest 
mistakes and oversights, which prompt paper retractions. When select
ing and aggregating high dimensional psychophysiological data into low 
dimensional variables for statistical analysis, such researcher degrees of 
freedom are obvious. Harmonized data formats (see discussion above) 
and widely applicable analysis pipelines (as discussed below) are 
currently emerging and may increasingly assist with pre-registration in 
the future. Finally, efforts underway in many laboratories and some 
journals (Marcus, 2016) to formalize the content of Methods sections in 
algorithmic and tabular form, rather than as a narrative, will ultimately 
assist in matching pre-registered steps with the steps actually performed, 
thus fostering reproducibility. A recent standardization initiative for 
EEG data (Styles, Kovic, Ke, Šoškićis) is described on the Open Science 
framework: doi:10.17605/OSF.IO/PVRN6. 

3.1. Power analysis 

Reviewers and authors alike are increasingly aware of the fact that 
sample sizes should be justified. A widely encouraged means to 
accomplish this goal is traditional power analysis, which is grounded in 
null-hypothesis testing (Button et al., 2013). Despite these efforts, it can 
be observed anecdotally that broad statements regarding sample sizes in 
the absence of quantitative analyses are abundant. Science twitter, re
viewers’ comments, and conference conversations often include notions 
to the effect that “20 is not enough” irrespective of effect size or para
digm. The present authors consider it desirable that sample sizes be 
based on appropriate, quantifiable methods, and that anecdotal or 
intuition-based judgments be minimized. However, estimating the 
required sample size is not trivial. The group observed several chal
lenges with respect to statistical power in psychophysiology. 

The first is that small sample sizes do not equal low power: Many 
studies reporting some of the highly replicable standard effects in psy
chophysiology were based on small samples (e.g., in EEG/ERP research 
the P300 effect, the LPP effects, P1 spatial attention effects, alpha 
blocking). These effects have been shown to be robust and have been 
replicated hundreds of times in studies where the technical execution 
was done correctly and where the signal-to-noise ratio of the dependent 
variable was acceptable. This highlights the important role of two fac
tors: Effect size and data quality (Clayson et al., 2013; Thigpen et al., 
2017). Many researchers are interested in smaller effects than those 
mentioned above, often because they are interested in additional vari
ables, e.g. they may ask: how is the P1 spatial attention effect modulated 
by threat? These researchers will not be able to base their sample size 
choices on very strong effects such as the P1 spatial attention main ef
fect. Instead, they will have to use some form of power analysis or 
simulation study to estimate a more realistic (larger) sample size needed 
for their study (Gibney et al., 2020). A detailed discussion of simulation 
studies is outside of the scope of the paper but pertinent examples have 
recently been published (Boudewyn et al., 2018). 

Second, given the multivariate nature of psychophysiological 
research, power analyses for within-participants (repeated measures) 
designs are highly sensitive to inter-variable correlations. These corre
lations yield dramatically different required sample sizes depending on 
the strength of the inter-variable correlations expected. These are 
however very rarely reported in the published literature, and they may 
vary depending on the equipment used, the within and cross-trial timing 
of the study, and the noise level of the past or expected data (Clayson 
et al., 2013). 

This leads to the third challenge: Statistical power and the required 
sample size to detect an effect are both influenced by data quality. As a 
consequence it is desirable for researchers to know the trial-by-trial 
variability and other low-level parameters of the data. These are how
ever not always available when researchers use turn-key systems that 
output only processed variables such as for example theta-beta ratios in 

EEG feedback research. Finally, the concept of statistical power is 
closely tied to null hypothesis significance testing (NHST), and as such 
part of a larger discussion in which problems of NHST have prompted 
efforts towards alternate statistical methods, including Bayesian ap
proaches. For example, Bayesian rules for stopping data collection are 
now available (Schönbrodt and Wagenmakers, 2018) which are not 
rooted in the paradigm of NHST and guide researchers into using sample 
sizes that provide sufficient evidence for or against a given hypothesis. 

In order to address challenges related to power, several practical 
steps can be taken. First, reporting the rationale for sample size decisions 
has increasingly been encouraged by many journals and grant agencies. 
Given the above considerations, this practice is expected to have a 
positive effect on replicability and transparency. Second, sample sizes 
should reflect the expected effects while also modeling the properties of 
the psychophysiological measure of interest (e.g. the signal-to-noise 
ratio) as well as the analytical plan (including artifact control, and 
averaging procedures, etc.). Traditional power analysis for within- 
participants (repeated measures) designs in software such as G*power 
requires exact knowledge of inter-variable correlations (Guo et al., 
2013). Thus, if researchers in the field habitually reported the in
tercorrelations of the dependent variables, or made available the data 
matrix, then the realism and quality of power analyses could be 
dramatically enhanced. 

Finally, traditional power analysis may not capture aspects of 
contemporary statistical approaches, e.g. those in which a computa
tional model is fitted to the data, or those involving machine learning. In 
those and many other cases, it is recommended that power and sample 
size be calculated based on suitable simulations. These simulations may 
take into account the covariance structure, signal-to-noise, and temporal 
stability of the data contributing to measuring dependent variables. For 
example, as compared to the widely used G*Power, several packages 
exist that are capable of estimating sample size for a study with fully 
within-subject design, common in psychophysiology, (e.g., 2 × 2 × 2: 
Condition × Time window × Channel interaction). R has several power 
packages available also as Shiny apps (for example PANGEA https 
://jakewestfall.shinyapps.io/pangea/, Superpower http://arcaldwe 
ll49.github.io/SuperpowerBook), and MOREpower (https://wiki.usas 
k.ca/display/MorePowerCalculatorV6/Home), which is standalone 
software. 

4. Multi-site studies 

Multi-site studies, in which the same research is conducted at 
different sites, are desirable because they enable researchers to increase 
statistical power by increasing the total sample size of the study, pro
mote transparent practices, facilitate communication between re
searchers, and foster quality control. Pooling data from multiple sites is 
critical in studies of rare disorders and other populations that are diffi
cult to recruit from (Smith et al., 2020; Swerdlow et al., 2007). Repli
cation of a given effect across different laboratories tends to increase 
confidence in the robustness of that effect, especially in the case of 
surprising or counter-intuitive effects (Bekhtereva et al., 2018). Simi
larly, multi-site studies encourage careful research practices, increase 
generalizability of the findings, help to avoid mistakes likely to be 
overlooked by a single researcher, and distribute the work between 
participating researchers, often reducing the overall workload (Johnson 
et al., 2009). For example, simultaneously running the same experi
mental paradigm in two EEG laboratories using different-brand EEG 
systems assists in expanding the sample size of the full study, and it 
establishes generalizability across hardware platforms and specific 
populations (Bekhtereva et al., 2018). Despite these potential benefits, 
multi-site studies are relatively rare in psychophysiology. Nevertheless, 
some examples exist (Nave et al., 2018; Nieuwland et al., 2018; Pavlov 
et al., 2020; Whiteford et al., 2019). Additionally, multi-site collabora
tive studies also pose a number of challenges as discussed next. 
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4.1. Funding 

Despite the increasing importance of collaborative research, most 
funding agencies do not have programs for supporting research at 
multiple institutions spread over the world. A recent example is shown 
in the reluctance of US funding agencies to support the Psychological 
Science Accelerator (Moshontz et al., 2018) despite its longstanding 
dedication to the promotion of reproducible, inclusive, and generaliz
able research. As a consequence, most multi-site studies are forced to 
limit their overall costs by refraining from using complex setups and 
expensive equipment. As a partial solution, local foundations may pro
vide funding to core sites for supporting their infrastructure. This 
arrangement may make distribution of funds across sites challenging, 
especially if political barriers are in place, such as the embargo of Iran, 
Cuba, and other countries by the United States of America. 

Early career researchers tend to be particularly responsive to op
portunities for participating in large-scale collaborative projects (Allen 
and Mehler, 2019). However, the challenges of conducting a multi-site 
study may disproportionately dissuade early career investigators who 
are not yet established in the field, have fewer available collaborators, 
and may not yet have the academic caliber to convince funders of their 
ability to execute a multi-site study. Similar constraints may apply to 
researchers at primary undergraduate institutions, or investigators in 
laboratories that are less funded than some of their peers. Given the 
growing emphasis on obtaining large sample sizes across many disci
plines, multi-site studies as well as studies based on openly shared data 
may become increasingly desirable for journal reviewers and editors. 
Scientific societies and funding agencies may positively impact these 
challenges by providing training opportunities and specific financial and 
infrastructure resources to those interested in pursuing multi-site 
studies. Furthermore, creating positions for research software engi
neers, as mentioned previously, may represent another helpful step to
wards integrating paradigms and data across collaborating sites. 

4.2. Coordination 

Coordination of a multi-site study involves multiple challenges. Re
searchers need to identify collaborators who are willing and able to 
invest their time and resources, choose site locations to ensure a rela
tively representative sample, convince funding sources of the feasibility 
of the project, and coordinate ethics policies that vary by institution. 
Additionally, researchers need to navigate complex subcontracts, dele
gate funding and responsibilities between sites, coordinate communi
cation between sites at all steps in the research process, plan for setbacks 
in costs or recruitment that may vary by site, and ensure fair authorship 
credit for all involved. Issues related to institutional regulations are 
especially challenging for international collaborations, as policies differ 
widely by country (Arellano et al., 2018; Chassang, 2017; Dove, 2018). 
Effective coordination of multi-site studies is especially challenging 
without dedicated personnel and administrative resources. Thus, a 
multi-site study is a risky undertaking for early career researchers who 
may have less funding than established senior researchers and less 
freedom to take chances as they seek tenure. 

4.3. Cross-laboratory harmonization 

Between-sites differences in hardware (e.g., EEG amplifiers, eye 
trackers, MRI pulse sequences, etc.) add unwanted variability to the data 
that may prevent pooling data collected in different labs. Many of the 
challenges discussed under “Data sharing”, above, apply here as well. 
Data harmonization between labs to control for equipment manufac
turer, location, and cohort differences remains a major challenge of 
setting up a multi-site study. In fMRI research, multiple studies have 
successfully reduced or eliminated site effects (Yamashita et al., 2019; 
Yu et al., 2018). There is a critical need for other domains of psycho
physiological research to find a solution for this problem as well. 

One potential solution, the “travelling subject” approach, has been 
useful for testing the efficacy of harmonization in fMRI collaborations 
(Sutton et al., 2008). It involves scanning the same participant at mul
tiple sites and also the same number of times at the original site (e.g., if 
there are five sites, then 6 recordings are compared: 2 from the first site 
and 4 from the other ones). For example, in Whiteford et al. (2019), the 
first author had her EEG recorded at each participating site. Five of the 
six sites used the same type of amplifier. In this study, within-site reli
ability of the EEG recordings was not significantly different from 
between-site reliability. Ultimately, the development of an affordable 
artificial participant that can be used for calibration and cross-validation 
would be desirable, such as phantom heads used in fMRI and MEG 
research. Another way to account for differences in hardware is to pool 
not raw data but derivatives such as standardized effect sizes and 
normalized values of dependent variables (e.g. peak-scored skin 
conductance converted to z-scores, independent EEG/MEG components 
instead of single channel EEG/MEG). This approach makes harmoniza
tion easier to achieve but limits the diversity of potential analyses. 

Another challenge to a multi-site approach is the difficulty of 
establishing consistent quality standards across participating labora
tories. For example, exact locations in EEG montages may differ between 
laboratories even when using a system of the same brand, with the same 
number of channels, because researchers may have configured the 
channels differently. Similar issues have been noted with respect to MR 
sequences and filter settings in recordings of autonomic physiology or 
MEG. It is often neglected that the technical expertise varies across 
different laboratories, representing a challenge for quality control in 
multi-laboratory, collaborative studies. To address these problems, lab 
visits among collaborators may be helpful, as required in clinical trial 
protocols. At the same time, there is an absence of cross-laboratory gold 
standard indices for establishing the same recording and data quality 
(Farzan et al., 2017). Likewise, there are no widely established methods 
for achieving cross-validation of findings, and available guidelines for 
how to achieve common signal quality on different recording systems 
are not yet widely adopted in the field. As discussed above, researchers 
may compute signal-to-noise ratios (e.g., Regan, 1989), as well as 
quality indices based on waveform and trial variability, which are 
mathematically unchallenging, unitless, and applicable across mea
surement modalities (Junghofer et al., 2000; Luck et al., 2020). 

4.4. Coordination of analytical strategies 

A final challenge with multi-site studies arises at the level of data 
processing and analysis. Multi-site studies as well as analyses of large 
shared data sets require scalability of analysis pipelines from few par
ticipants to hundreds of participants. Not all methods are scalable, 
highlighting the need to consider this point at the time of study plan
ning. Additionally, there is the issue of what level of processing shared 
data will undergo. Some multi-site collaborations share aggregated data 
at the level of group means or effect sizes (e.g., for meta-analyses), 
others may choose to share data that has undergone basic processing 
locally, while yet others may want to share raw unprocessed data which 
will then be processed by one site only (e.g., mega-analyses). For col
laborations in which partially processed or raw individual data are 
shared, de-identification of shared data is critical to remove any 
personally identifiable information that could violate participant 
confidentiality (Moctezuma and Molinas, 2020). Likewise, transferring 
data between sites requires adequate encryption and security measures. 
In addition, the pooled data will need to be organized in such a way to 
facilitate processing (see the discussion on BIDS formatting above). 
Furthermore, as mentioned earlier, preregistration of the analytic plan 
has been described as a successful strategy (Chambers, 2019b; Nosek 
et al., 2018; Wagenmakers et al., 2012). Here, multi-site studies face the 
additional obstacle of having to reach a consensus regarding analytical 
strategies across multiple investigators with potentially diverse views. 
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5. Solutions 

The authors identified several practical steps that may be taken by 
individual researchers to foster open science practices in psychophysi
ology as illustrated in Fig. 2. 

5.1. Computing and reporting indices of data quality and reliability 

Although there have been efforts towards establishing an objective, 
system-independent index of data quality, applicable to shared EEG/ 
ERP, these efforts are not yet widely adopted. Indices of data quality are 
readily computed and widely available (Junghofer et al., 2000; Luck 
et al., 2020; Regan, 1989). In a similar vein, calculating and reporting 
metrics of reliability and internal consistency (Clayson and Miller, 
2017a, 2017b; Thigpen et al., 2017) contributes to harmonization and 
fosters sharing and comparing open science data. Other efforts, such as 
showing standard errors of physiological time series and routinely 
reporting signal-to-noise ratios will serve a similar purpose. It was noted 
that leveraging multi-level statistical models, increasingly used in psy
chophysiology, assists in explicitly modeling and thus quantifying sys
tematic variance between laboratories that attempt to perform the same 
study. 

5.2. Database for open calls for collaboration in psychophysiology 

It was observed that there is a substantial appetite among researchers 
at different career stages for engaging in open-science multi-laboratory 
research, but the communication of collaborative opportunities is 
perceived as lacking. Establishing a platform for facilitation of collab
orative studies represents a task better suited for scientific societies than 
for individual researchers. 

5.3. Funding database for multi-site studies 

Scarce funding opportunities for multi-site (especially) international 
studies limit the ability of researchers to engage in robust, multi-site 
studies. It would be desirable to develop a database of funding oppor
tunities for (1) promoting open science initiatives (2) national grants 
with open science, collaborative research focus (3) international grants 

to support multi-site studies. 

5.4. Assistance for transparent coding and sharing of processing pipelines 

With programming languages and platforms in constant flux, re
searchers who focus on conceptual, applied, or clinical research may not 
be in a position to share their processing pipelines in the best way for 
others to find, understand, and reproduce. Major steps in this regard 
would involve establishing training programs, online resources, and 
mechanisms that provide practical assistance for researchers who seek 
to share their code in an efficient way. 

5.5. Training 

As a final point, the authors observe that training in the skills needed 
to implement the recommendations above is not yet widely available. 
Goals for training in the field of psychophysiology include training in 
what is under the hood of widely used programs for data reduction, 
analysis, and statistical evaluation. It also includes training in the 
mathematical and biophysical foundations that enable linking concepts 
such as signal-to-noise to methodological constraints related to mea
surement, and eventually enable a researcher to perform simulation- 
based power analysis. Such training would be most effective if it were 
deployed in a broad and accessible, open, fashion. 
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